FT10DxxR

650 nm DC-10 MBd Fully Integrated RedLink® Fiber Optic Transmitter

Datasheet

DESCRIPTION

The Firecomms DC-10 MBd RedLink® transmitter consists of a highly reliable Resonant Cavity Light Emitting Diode (RCLED) with integrated driver IC as a visible optical transmitter. The device is housed in a miniature package to interface to plug-terminated lengths of Plastic Optic Fiber (POF) or 200 μm Plastic Clad Silica (PCS) fiber.

It is capable of delivering 10 MBd digital signals over fiber and operate in the temperature range of -40 $^{\circ}$ C to +85 $^{\circ}$ C. The device can operate from a 5 V or 3.3 V DC power rail and can tolerate \pm 10 % supply variation.

The transmitter contains a visible red wavelength RCLED with fully integrated precision driver IC. The use of intrinsically eye-safe, visible light simplifies link set-up and testing. It is available in Inverting and Non-inverting options.

AVAILABLE OPTIONS

Table 1
ORDERING INFORMATION / PART NUMBERS

10 MBd Horizontal Package Non-Inverting, TTL	FT10DHNR
10 MBd Horizontal Package Inverting, TTL	FT10DHIR
10 MBd Vertical Package Non-Inverting, TTL	FT10DVNR
10 MBd Vertical Package Inverting, TTL	FT10DVIR

FEATURES

- Fully integrated driver IC with visible RCLED at red wavelength (650 nm)
- Optimized for data transmission from DC-10 MBd
- Industrial Temperature Range -40 °C to +85 °C
- Dual power supply operation (5 V, 3.3 V) with 10 % rail tolerance
- RoHS compliant and flame retardant (UL 94 V-0)
- Inverting and Non-Inverting options available
- Horizontal and Vertical options available
- Compatible with Versatile Link cables and connectors

APPLICATIONS

Table 2 APPLICATIONS

Application	Automation and Industrial Control. Serial Communications. Voltage Isolation.
Standard	Serial RS232, RS485, CAN-Bus, MODBUS, Profibus
Distance	50 meters Step Index POF [1] 100 meters with 200 μm PCS fiber [1]
Speed	DC to 10 MBd

Note: 1. Depending on the installation conditions

SPECIFICATIONS

Table 3
TRANSMITTER PIN DESCRIPTION

Pin	Name	Symbol
1	Line Voltage	Vcc
2	No Pin Present	
3	GROUND	GND
4	Data Input (TTL)	D+
5	Retaining Pin	GND
8	Retaining Pin	GND

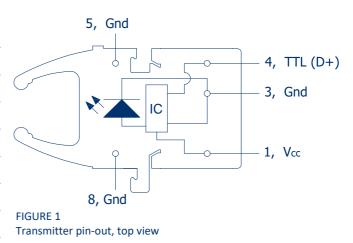


Table 4
REGULATORY COMPLIANCE

Parameter	Symbol	Standard	Level
Electrostatic Discharge, Human Body Model (contact ESD)	НВМ	Mil-STD-883	Level 2 (4 kV)
UL Certification	UL	60950-1	Files No. E362227
Storage Compliance	MSL	J-STD-020	2a (4-week floor life)
Restriction of Hazardous Substances Directive	RoHS	Directive 2011/65/EU	Certified compliant
Eye Safety		IEC 60825-1	LED Class 1

RECOMMENDED APPLICATION CIRCUIT

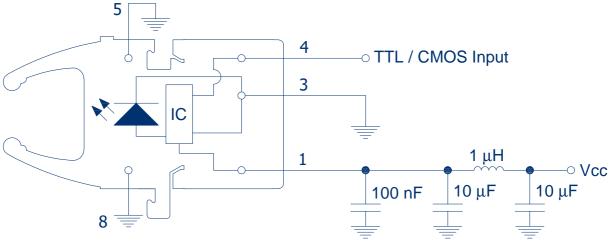


FIGURE 2 Recommended transmitter application circuit. See note 7 Table 6

SPECIFICATIONS

Table 5 ABSOLUTE MAXIMUM RATINGS

These are the absolute maximum ratings at or beyond which the FOT can be expected to be damaged Notes:

1. 260°C for 10 seconds, one time only, at least 2.2 mm away from lead root

Parameter	Symbol	Minimum	Maximum	Unit
Storage Temperature	Tstg	-40	+85	°C
Operating Temperature	Тор	-40	+85	°C
Soldering Temperature [1]	Tsld		+260 [1]	°C
Supply Voltage	Vcc	-0.5	5.5	V
TX Input Voltage (Data in)	VIN	-0.5	5.5	V

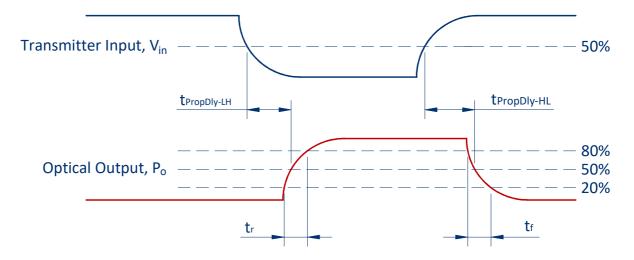


FIGURE 3
Transmitter Propagation Delay and rise/fall time definitions as per inverting application circuit of Figure 2.

SPECIFICATIONS

Table 6 TRANSMITTER ELECTRICAL AND OPTICAL CHARACTERISTICS

Test Conditions:

- 1. Test data was validated over the full temperature range of -40 °C to +85 °C, and over both power supply rail options of 5 V and 3.3 V \pm 10%. Typical data out is at 25 °C, with 10 Mbps PRBS data and 3.3 V Supply
- Output power levels are for peak (not average) optical output levels. For 50% duty cycle data, peak optical power is twice
 the average optical power. Optical power is measured when coupled into 0.5 m of a 1 mm diameter 0.5 NA POF and a large
 area detector.
- 3. Electrical input pulse width is determined at 1.5 V and dV/dt between 1 V and 2 V shall not be less than 1 V/ns.
- 4. Emission Wavelength (centroid) $\lambda_c = \Sigma_i P_i$. $\lambda_i / \Sigma_i P_i$. (Ref: EIA/TIA std. FOTP-127/6.1, 1991)
- 5. Spectral Width Root Mean Squared (RMS) $\lambda_{RMS} = (\Sigma_i P_i (\lambda_c \lambda_i)^2 / \Sigma_i P_i)^{1/2}$. (Ref: EIA/TIA std. FOTP-127/6.3, 1991)
- Wake Up Delay is the time from valid power up to valid data output, at 5 V or 3.3 V +/-10%, with input data at 50% duty
 cycle
- 7. Pins 5 and 8 are used for mounting and retaining purposes only. Connect to ground.

Parameter	Symbol	Min	Typical	Max	Unit	Test Condition
Supply Current	Icc		12.5 @3V 13.5 @5V	25	mA	[1]
Input Voltage - Low	V_{IL}	-0.3		0.8	V	[1]
Input Voltage - High	V_{IH}	2.0		Vcc + 0.25	V	[1]
Data Input Capacitance	C _{in}			7	pF	
Data Input Resistance	R _{in}	10			МΩ	
Output Power	P_{High}	-6		+2	dBm	[1], [2]
Emission Wavelength (centroid)	λ_{c}	640	650	680	nm	[4]
Spectral Width (RMS)	λ_{RMS}			30	nm	[5]
Optical Rise time (20%-80%)	t _r		1.6	5	ns	[1]
Optical Fall time (20%-80%)	t _f		1	2	ns	[1]
Propagation Delay Low-to-High	t _{PropDly_LH}	13	22	30	ns	[1], Figure 3
Propagation Delay High-to Low	t _{PropDly_HL}	13	22	30	ns	[1], Figure 3
TX Pulse Width Distortion	PWD	-5.0		+5.0	ns	[1,4]
Wake Up Delay (power up)	t power-on		20		μs	[6]

MECHANICAL DATA, HORIZONTAL

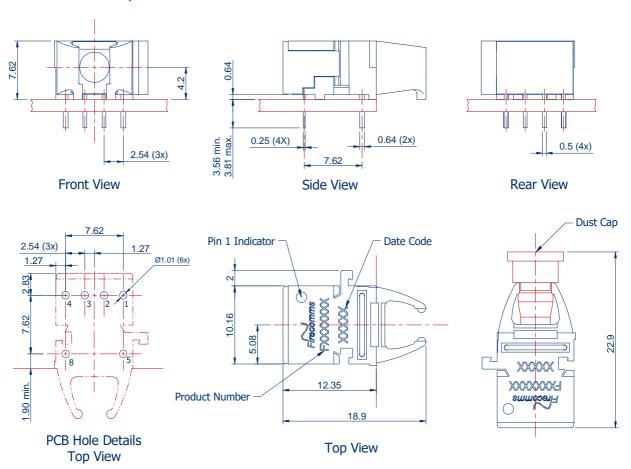


FIGURE 4 Mechanical dimensions of the horizontal connectors and PCB footprint, which is a top view General dimensional tolerance is $\pm\,0.2~\text{mm}$

FIGURE 5
Packing tube for Firecomms Horizontal RedLink® Transmitters

MECHANICAL DATA, VERTICAL

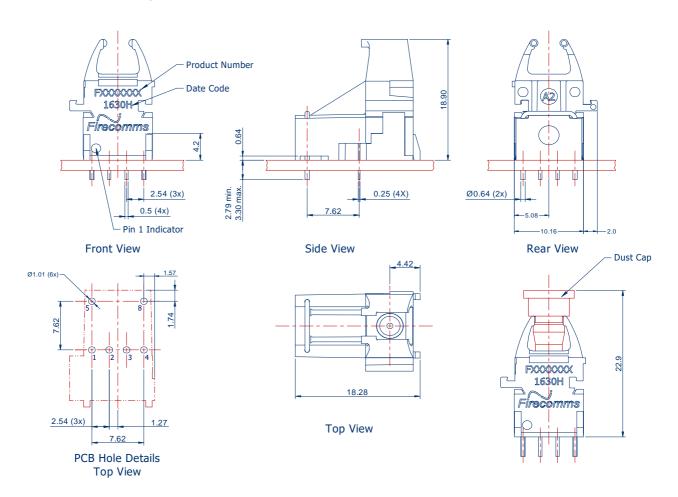


FIGURE 6 Mechanical dimensions of the vertical transmitter connectors and PCB footprint, which is a top view General dimensional tolerance is $\pm\,0.2$ mm

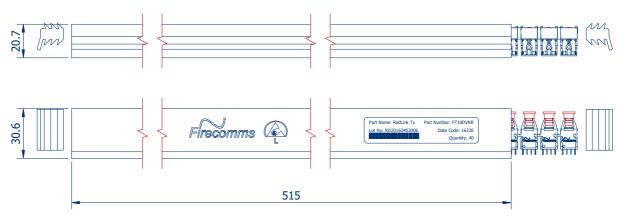


FIGURE 7
Packing tube for Firecomms Vertical RedLink® Transmitters

PART HANDLING

The Firecomms DC-10 MBd 650 nm RedLink® transmitter devices are color coded gray. They are auto-insertable. They are tested for handling in static-controlled assembly processes (HBM). Cleaning, degreasing and post solder washing should be carried out using standard solutions compatible with both plastics and the environment. For example, recommended solutions for degreasing are alcohols (methyl, isopropyl and isobutyl). Acetone, ethyl acetate, phenol or similar solution based products are not permitted.

In the soldering process, non-halogenated water soluble fluxes are recommended. These products are not suitable for use in reflow solder processes (infrared/vapor-phase reflow). The dust plug should remain in place during soldering, washing and drying processes to avoid contamination of the active optical area of each part.

The Moisture Sensitivity Level (MSL) classification of this device is 2a according to JEDEC J-STD-020. The shelf life of an unopened MBB (Moisture Barrier Bag) is 24 months at < 40 °C and < 90 % R.H. Once the Moisture Barrier Bag is opened the devices can be either

- a) Stored in normal factory conditions < 30 °C and < 60 % R.H. for a maximum of 672 hours (4 Weeks) prior to soldering.
- b) Stored at < 10 % R.H. (Dry Cabinet).

PACKING INFORMATION

Components are packed in PVC anti-static tubes in moisture barrier bags. Bags should be opened only in static-controlled locations, and standard procedures should be followed for handling moisture sensitive components.

Table 7
PACKING INFORMATION

		Horizontal	Vertical
Components per Tube		40	40
	Tube Length	515 mm	515 mm
	Tube Height	16.2 mm	21.0 mm
	Tube Depth	26.9 mm	30.8 mm
Tubes per Bag		5	5
Bags per Inner Carton		1	1
	Inner Carton Length	630 mm	630 mm
	Inner Carton Width	70 mm	70 mm
	Inner Carton Height	105 mm	105 mm
Weight per Inner Carton, Complete		0.77 kg	0.92 kg
Components per Inner Carton		200	200
Inner Cartons per Outer Carton		10	10
	Outer Carton Length	650 mm	650 mm
	Outer Carton Width	235 mm	235 mm
	Outer Carton Height	376 mm	376 mm
Weight per Outer Carton, Complete		8.13 kg	9.59 kg
Components per Outer Carton		2,000	2,000

For the most recent revision or further information please visit www.firecomms.com or contact the company directly at the following address, Firecomms Ltd, 2200 Airport Business Park, Cork, IRELAND. Copyright© 2004-2018 Firecomms. All rights reserved. Firecomms refers to Firecomms Limited and/or its subsidiaries. Firecomms assumes no responsibility for inaccuracies or omissions in the information contained in this document. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein.